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J .  Phys.: Condens. Matter 3 (1991) Fl-FS. Printed in the UK 

RISM equations for fluids in quenched amorphous 
materialst 

David Chandler 
Department of Chemistry, University of California, Berkeley, CA 94720, USA 

Abstract. The refkrence interaction rite method (RISM) may be applied to poly- 
atomic fluids sorbed by quenched materials. Fornial aspects of such applications are 
discussed. Connections with and generalisations of the theory oIMadden and Glandt 
are made. 

1. Introduction 

It is a pleasure to participate both in this Collection as well as in the Symposium 
honouring Peter Egelstaff. His enthusiasm and experimentation played a large role 
in motivating me and my generation to study the liquid state. For this collection of 
papers commemorating that Symposium, I wish to propose here a new use of the RISM 
equations [3]. Early applications of the RISM theory [4] were devoted to explaining 
the first neutron scattering experiments on molecular fluids, experiments that Peter 
Egelstaff had performed [5]. Calculations have not yet been done with what I now 
propose, but the structural predictions that will follow may be a stimulus for future 
neutron scattering experiments. 

Madden and Glandt have derived and applied a theory for the equilibrium proper- 
ties of simple atomic fluids sorbed by quenched amorphous materials [6,7]. As we shall 
see, their theory may be viewed heuristically from the RISM perspective. From this 
view there is an apparent generalization to the case of polyatomic fluids in equilibrium 
with amorphous solids. This generalization is the subject of this article. 

The development begins in section 2 where the general reduction of N x N RISM 
equations is discussed. This reduction is used profitably in RISM theories of polymers 
and electrons [9-111. In the current context, it facilitates an approach in which a 
quenched material is treated as a single macroscopic molecule. This approach is put  
forth in section 3. The treatment of flexible polyatomic sorbates is discussed in sec- 
tion 4. A variational principle for solving the associated RISM equations is presented 
in section 5. A final discussion is presented in section 6. 

t Editor’s note: the talk given by Chandler at the Egelstaff Symposium was on the structwe and 
dynamics of electron transfer in aqueous solutions. However, since this work had already been 
published and reviewed in the Proceedings of the Lyon Liquid Matter Conference [l, 21, the following 
originalpaper w a s  accepted in lieu of a coderencepaper, as it represents the profoundinAuence that 
interaction with Peter Egelstdf tias had on the career of the author. 
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2. Reduced IUSM equations 

The Ornstein-Zernike-like equation of Chandler and Andersen [3], 

h = wcw t wcph = wc[l - p c ] - ' w  = wcw t wcpwcw + w c p c p c w  -t . . , (2.1) 

expresses the intermolecular site-site pair correlation function, horM7M,(Ir - r'l), in 
terms of the molecular densities, p.M, the intra-molecular pair correlation function, 

~ * , ? , ~ ( [ r  - 41) = (S(r$ - r$ - r + r'))  (2.2) 

where r$$ is the position of the a t h  site in the ith molecule of type M ,  and the site- 
site direct correlation function ccrM7.M,(lr -r[). The abbreviated matrix notation wa8 
used in (2.1) [SI. Multiplication refers to convolutions in real space (or products in 
Fourier space), sums over site labels (the Greek subscripts) and sums over species 
labels (the capital Roman subscripts). The w matrix is diagonal in M with elements 
(2.2), and the p matrix is diagonal in A4 and r with element pnf. The pointed brackets 
in (2.2) indicate ensemble average. 

In terms of diagrams, (2.1) is the sum of all simple connected chains with c-bonds 
denoting the c-functions and w-liypervertices denoting the w-functions [S, 121. In what 
follows, we will refer to this representation, and often partition the sum of all chains 
into subsets catalogued by the respective numbers of specific w-functions. 

The Chandler-Andersen equation is closed by specifying an additional connection 
between I t  and c. The mean splierical approximation (MSA) is one specific class of 
closurcs: 

'LcrM,?Mr(r)  = < 'mM,?M' (2.3~1) 

and 

c ~ M + , M , ( ~ )  = 4a~7,w(r)  P > ~ * M , ? M ,  (2.36) 

where are distances of closest approach and 4orM7M,(r) is a specified inter- 
action (in units of -k,T). Rclations (2.1)-(2.3) are examples of REM equations. 

Consider their implementation for a one-component fluid, each molecule of which 
contains N sites. The equations involve N x N matrices. With N very large, the 
equations are generally intractable. If, however, there are only a few non-equivalent 
types among this large number, the RlSM equations simplify considerably. For exam- 
ple, consider a melt of linear polymers with N identical monomer units. With N large 
enough, the vast majority of sites are far from chain ends. As a result, 

he7.(r) = h(r) for nearly all ay (2.4) 

where 
1 

h(r) = 3 h&) (2.5) 
*,7 

and we have dropped the species label M for convenience. Similarly, 

co7(r) = c(r) for nearly all cry. 
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By employing the simplifications (2.4) and (2.6) in (2.1), we arrive at 

1 
N =  h(r) = - bg.11 * * WAy(T) + PMwg.q * * h A ~ ( T ) l  

o.-f,n,* 
= w * c * u(r) +- pw * c *  h( r )  = p - ' w * c * ~ ( r )  (2.7) 

which is a valid reduction in the limit of large N .  In this equation we have introduced 
p = N p y  which is the average density of monomer units, x(r) which is the monomer 
density-density correlation function, and 

Equation (2.7) does not involve a matrix of functions, but only the scalars h(r), C ( V )  

and w( r ) .  The reduced RISM equation is therefore tractable. I t  depends upon N only 
implicitly through w(r).  

Generalizations of (2.7) to  block copolymers and/or to melts of a few components 
are straightforward and equally tractable. These equations form the basis of the RISM 
theories of polymers [9, lo]. Equation (2.7) is also a basic part of the REM-polaron 
theory of solvated electrons [ll]. In the next section, reduced RISM equations will be 
derived in yet another context. 

3. Quenched amorphous materials as a supermolecule  

Consider a liquid sorbed by an amorphous solid. We will assume that the 5uid is at 
equilibrium, and that the structure of the disordered porous material is essentially 
quenched. On large length scales, this non-equilibrium system is homogeneous. We 
shall view the solid material as one huge ubiquitous molecule. The Fourier transform 
of its w-function, (2.8), is the structure factor of the material 

The positions of the material sites, Irk)}, are characterized statistically by a distri- 
bution which is unaffected by the fluid. The angular brackets, (. . .)*, indicate the 
average over that distribution. The resulting Gm(k) is independent of the orientation 
of k. 

With this perspective, we construct a reduced RlSM equation. For simplicity, con- 
sider a solid material where there is only one non-equivalent site. While macroscopic 
in extent, there is but one material 'molecule' in the system. As such, the chains to 
be summed in (2.1) should contain no more than one w,-function. In particular, for 
a simple onecomponent atomic fluid of density p,, this consideration yields 
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where 

G,/(k) = 6,f(k)D -P,E,,(k)I-l. (3.3) 

€ h e ,  c,, (r) is the direct correlation function between pain of fluid particles, and 
S, , (k )  is its Fourier transform; hfm(r) and c,,(r) refer to the pair correlation function 
and direct correlation function, respectively, between a fluid particle and any of the 
material sites. Since the N sites are allequivalent, h,,(r) and e,,,,(.) are independent 
of a specific site label. Equation (3.2) is derived by summing over all equivalent 
sites as exhibited in (2.7). Similarly, consider the contribution to the fluid-fluid pair 
correlation function, h,,(r), from chains with two c-functions and one w-function: 

(3.4) 
1 C:,A+k,(k)em,(k) V = q , ( ~ ) P , ~ A k )  

a17 

where p 
such chams with no or one w,-function yields 

= N / V  is the density of sites comprising the material. The sum over all m 

B,, = C f , ( k )  + [ I +  P/C,jf(~)12i.;,(~)~,~jm(~). (3.5) 

Equations (3.2) and (3.5) are Madden and Glandt's Ornstein-Zernike-type equa- 
tions for an atomic fluid in equilibrium with a porous material [6,  71. In the notation 
of [6] and [7],rj,(k) corresponds to l/[I-p,E,,,,,,(k)]. Notice that the term containing 
G,,,(k) in (3.5) would not contribute if the material was confined to an infinitesimal 
fraction of the volume available to the fluid. In that case, c,,(r) would be the pure 
bulk fluid direct correlation function, and the Madden-Glandt equations would r e  
duce to more standard Ornstein-Zetnike or Chandler-Andersen equations. This limit 
would be pertinent if, for example, the material were confined to a planar region as 
might be done to treat a fluid in equilibrium with a surface. 

In that case, 
(3.2) coincides with the Ornstein-Zernike equation for a fluid a t  low concentrations 
in equilibrium with an annealed material with density-density correlation function 
p,w,(/r -.'I). This correspondence is the correct result in this limit. In particular, 
consider the statistical behaviour of a single molecule in a macroscopic equilibrium 
material. I t  is the same as that for a single molecule that is allowed to equilibrate to 
(i.e., wander throughout) a rigid system whose configuration is one member of its own 
equilibrium ensemble. 

Also notice that C,,(r) plays no role in (3.2) when p, 4 0. 

4. Flexible polyatomic molecules in equi l ibr ium with quenched material 

Madden and Glandt's derivation [6, 71 of (3.2) and (3.5) is based upon a topological 
reduction of the cluster series for a fluid perturbed by a quenched material. The 
heurestic derivation given in the previous section suggests a generalization of the 
Madden-Glasdt equations appropriate for polyatomic fluids. Specifically, in the chain 
sums for this more general case, the w-functions of the fluid molecules, w,,,(r) ,  should 
appear at the fluid particle vertices. The subscripts f and f' refer to the finite number 
of sites in the polyatomic fluid molecules. The sums of all chains with no w,-functions 
now become the matrix of functions given in k-space by 

2 ( k )  = 3 ( k ) t ( k ) [ l  - p,&(k)ê (k)]-'3(k) (4.1) 
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where 3(k) is the matrix with elements &,,,(k), similarly, t(k) refers to the direct 
correlation functions, E,,,(k). With this notation, the sums with one or no w,- 
function yield 

i ,m(k)  = C[&,,d(t) + p / ~ , , l ( ~ ) I ~ , l m ( k ) & m ( k )  (4.2) 
f '  

and 

i / , , (k)  = e,,@) + [ & , , I 4 9  + P,ef,"(k)l ,","' 
x ~,,,,(k)p*rj,(k)~,,,,'(k)[&,,,,,'(C) + p ,  c/,,,,, ( k ) ]  (4.3) 

The sums over f', f" and f"' span the sites of the polyatomic fluid molecule. Note 
that c,,(r) = c,,,/(r). 

Equations (4.2) and (4.3) are the polyatomic fluid generalizations of (3.2) and 
(3.5). Obvious extensions of (3.7) and (3.8) include the case of a multi-component 
fluid. 

With closure relations such as (2.3), these equations can be solved for the pair 
correlation functions h,,(r) and h,,,(r) in terms of w f f , ( r )  and U,(.). When the 
polyatomic molecules are flexible compounds, their w-functions could differ substan- 
tially from those of the free molecule. To compute the influence of the environment 
on w,,,(r), note that the full n-site intra-moIecular distribution is given by 

s(r('), . . .,An)) = cs(')(r('), . . . , r(n))y(dl) ,  . . . , (4.4) 

where s(O)(r('), . . .) is the free molecule distribution, y(d1) ,  . . .) is the cavity dis- 
tribution function or influence functional [13, 141, and c is the norma1izati)on con- 
stant. The intebrating of s(#), . . .) over all coordinates except &) and & ) yields 
w,,,(lr(') - r(f  11). In practice, this integration can be simplified by considering only 
the relatively few accessible conformations. 

Possible uncertainties in the y-functions can be the most serious obstacle in em- 
ploying (4.4). For this problem, a reasonable solution may be the estimate that has 
proven useful for isomorphic electron polymers [l l ,  151, 

where v,,,(r) is the solvent induced interaction (in units of -k,T) between sites f 
and f'. This interaction is akin to a reaction field coupling between pairs of sites. 
As such, its topological structure should be chains originating with a c-bond at one 
site and ending with a cbond at the other; in between, there should be at least one 
sorbate or material site. The sum of all these chains is 



F6 D Chandler 

The inverse w-matrices insure that the chains begin and end with c-functions and 
not w-functions. Equation (4.6) applies to the fluid in equilibrium with the quenched 
material. It generalizes formulae pertaining to annealed surroundings. Compare it, 
for example, with (6.10) of [15]. 

This estimate of the intramolecule structure is a self-consistent theory. The c- 
functions depend upon the w-functions through the solutions to (4.2) and (4.3) and 
their closures. The w-functions depend upon the c-functions through (4.4)-(4.6). 

6. Variational principle 

Consider now the method of solving (4.2) and (4.3) with the specific closure (2.3). A 
variational procedure follows from the observation that 

x /dk{  trpfG(k)c(k) +Indet[ l  - p f & ( k ) E ( k ) ]  

( 5 . 1 ~ )  

(5.16) 

(5.2) 

where tr and det denote the matrix trace and determinant, respectively. In view 
of ( 2 . 3 ~ )  and (5.1), it is secn that the closure (2.3) together with (4.2) and (4.3) 
are equivalent to adjusting cr,(r) and c ,,(r) in the range 0 < r < d f m  and 0 < 
r < d,,,,, respectively, so as to make I&f,,,(r),cff,(r)] stationary with respect to 
these variations. The functional is positive, and the variational solutions correspond 
to determining its minimum. For computational efficiency, variational solutions are 
generally preferable to standard iterative procedures provided the unknown functions 
are short ranged. In the present case, the unknowns are the c-functions a t  short 
distances. Variational formulations of more general closures are readily deduced from 
(5.1). 

For notational clarification, it is perhaps useful to consider (5.2) for the case of a 
simple fluid sorbate. In this case, the functional I simplifies to 

One may verify that (5.1) with I = IbfC yields the Madden-Glandt equations, (3.2) 
and (3.5). 



RfSM equations for fluids in quenched amorphous materials F7 

6. Discussion 

This article outlines a computationally Convenient theory for the structure of a poly- 
atomic fluid sorbed by a quenched amorphous material. The correlation functions so 
obtained can be employed to estimate the thermodynamic properties of such systems. 
It remains to investigate the most efficient and accurate routes to these estimates. 

In addition to exploring these applications, the present artide possibly foreshadows 
other uses of the RISM theory for complex systems. For example, the supermolecule 
view might be convenient for treating fluids confined to the micropores of crystalline 
molecular sieves. This view may also be of use in constructing theories for fluids 
at the interfaces of disordered solids or membranes. Here, the supermolecule may 
be a planar or nearly planar assembly. For the cases in which these assemblies can 
fluctuate, one will need to consider how the associated w,(k) = w,(kp kI) is affected 
by the neighbouring fluid. 

Even without these extensions, the perspective drawn in the simplest case, that of 
the Madden-Glandt equations, may be of some pedagogical interest. The variational 
formulation of their equations should be of practical use too. 
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